首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6327篇
  免费   831篇
  国内免费   1719篇
化学   4511篇
晶体学   182篇
力学   1546篇
综合类   77篇
数学   530篇
物理学   2031篇
  2024年   12篇
  2023年   90篇
  2022年   156篇
  2021年   207篇
  2020年   280篇
  2019年   237篇
  2018年   218篇
  2017年   340篇
  2016年   347篇
  2015年   269篇
  2014年   368篇
  2013年   565篇
  2012年   382篇
  2011年   503篇
  2010年   348篇
  2009年   390篇
  2008年   433篇
  2007年   450篇
  2006年   432篇
  2005年   418篇
  2004年   352篇
  2003年   314篇
  2002年   231篇
  2001年   252篇
  2000年   208篇
  1999年   157篇
  1998年   149篇
  1997年   138篇
  1996年   100篇
  1995年   94篇
  1994年   93篇
  1993年   75篇
  1992年   48篇
  1991年   39篇
  1990年   36篇
  1989年   23篇
  1988年   19篇
  1987年   22篇
  1986年   18篇
  1985年   11篇
  1984年   12篇
  1983年   5篇
  1982年   11篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有8877条查询结果,搜索用时 15 毫秒
21.
《Mendeleev Communications》2020,30(4):525-526
  1. Download : Download high-res image (121KB)
  2. Download : Download full-size image
  相似文献   
22.
本实验通过模拟植物光合作用,设计制备了新颖的光电联合催化池3D-ZnO/Ni BiVO4/FTO,用电化学沉积法制备了泡沫镍负载的ZnO纳米棒光电阴极和BiVO4光电阳极,以0.1 mol·L^−1 KHCO3水溶液作为电解质,1 mmol·L^−1曙红Y为光敏剂,在−0.6 V硅太阳电池的电压下光电催化还原CO2得到了乙醇、乙酸和甲醇,总产率22.5μmol·L^−1·h^−1·cm^−2。实现了将太阳能贮存为化学能并减少了空气中的CO2,加深了学生对绿色化学和植物Calvin循环机理的理解。  相似文献   
23.
In this paper, the behaviour of the industrial applied Ti/Zr conversion coating (CC) pretreatment on rolled automotive aluminium samples (AA5182) is analysed. Due to its nanometre lateral and depth resolution, Auger electron spectroscopy (AES) is used to analyse the CC distribution at surface cathodic intermetallic particles. As a result of its high surface sensitivity, the AES technique is very susceptible to differences in the top contamination layer thickness. It is demonstrated that AES point measurements performed on aluminium model samples coated with 1.5 and 3 nm of Ti (oxide) layer cannot differentiate the two-layer thicknesses if a difference in the top contamination thickness is not taken into account. A data analysis methodology is introduced, based on the ratio of normalized peak areas (enrichment ratios), to eliminate the effect of the contamination layer thickness. The experimental validation of the methodology is performed on the model samples, demonstrating errors of 2% on the enrichment ratios on similar samples with different contamination layer thicknesses, while the conventional spectra quantification results in errors of 49%. The methodology is also theoretically substantiated within certain constraints. By the use of the AES methodology, an enriched Ti and Zr deposition is confirmed at the cathodic intermetallic particles at the surface of the industrial no-rinse CC sprayed automotive aluminium sheet samples.  相似文献   
24.
All-organic composites are widely used in energy storage application due to the high breakdown strength performance, but the improvement of energy storage was limited by the relatively low dielectric constant. Therefore, to satisfy the high demands of dielectric materials, energy storage properties of polymer composites should be further enhanced. In this article, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) and polyurea (PUA), which are known as high dielectric ferroelectric material and linearly high energy storage efficiency material respectively, are composited through double layer (DL) casting method for the first time. The properties of DL structured composite film is contrasted with solution blending structure especially in energy storage efficiency, and the results demonstrate that DL structure design can make great use of advantages of two materials and also can avoid the influence of phase separation between P(VDF-CTFE) and PUA efficiently. Moreover, high breakdown strength (6180 kV/cm) and high energy storage efficiency (77%) of DL composites can be realized simultaneously by incorporating PUA as an insulating layer, and the mechanism is discussed in detail. This work provides an effective route to improve the energy storage properties of polymer dielectric materials and shows great application potential.  相似文献   
25.
Natural fibers are inexpensive, biodegradable, and have similar specific properties to some synthetic fibers. Hardly any previous investigations exist of a composite made of multiple layers of pure Kevlar fiber fabric and pure Flax fiber fabric in a “sandwich structure”, but it only measured impact properties. The composite was made of 12 Flax/epoxy layers at the core in 3 possible configurations (i.e. [0]12F, [0/90]6F, or [±45]6F) that were sandwiched by 2 Kevlar/epoxy layers (i.e. plain weave) on each side. This study showed maximum change in the mechanical properties with respect to Flax/Epoxy for tension (+137.85% in ET, and +171.22% in σUT), compression (+171.22% in Ec, and −10.6% in σUC), 3-point bending (−11.54% in EB, and +2.19 in σUB), torsion (−5.31% in G, and 395.82% in τ), and water absorption (60.04%). This novel hybrid composite may be useful for research and industry applications.  相似文献   
26.
Hindered amine light stabilizers are used to protect polymers from heat- and light-induced degradation. In this study the oligomeric stabilizer Tinuvin 622 was analysed in-depth employing high performance liquid chromatography/time of flight mass spectrometry (HPLC/TOF-MS) to differentiate products of different manufacturers in respect of their terminating groups and oligomer length. Additionally, the behaviour of the stabilizer in uncured and cured polyester powder coatings was investigated regarding its interaction with the other coating components and chemical changes during the crosslinking process. The extraction efficiency was determined as a function of oligomer length and coating colour.  相似文献   
27.
Lithium-ion batteries have been developing intensively and earn an unprecedented reputation, yet advanced performance and safety issue still require considerable investigation. Separator is vital to comprehensive properties of batteries, where the mechanical properties are key to breaking through of new-type separator. Unfortunately, electrolyte submersion has caused damage to strength of cellulose separator. Whereupon, in this work, cellulose separator is optimized by introducing lignin particles to promote electrolyte-immersed mechanical strength. Experiments are conducted concerning surface morphology, contact angle, porosity, electrolyte uptake, mechanical properties and electrochemical performance. Molecular simulation is implemented to explore the mechanism of tensile behavior of cellulose and lignin subjected to electrolyte solvents. Experimental results confirm positive effect of lignin addition in improving mechanical properties and simultaneously maintaining impressive electrochemical performance of the cellulose/lignin composites separators. Besides, lignin addition amount of 2.5% and 5% is recommended to achieve promising overall properties. Molecular simulation has successfully unveiled that weakening of cellulose separator submerged in electrolyte is resulted by the deformed cellulose amorphous region and the promoting effect of adding lignin is contributed from the new hydrogen bonds generated between cellulose and lignin molecules. Hopefully, this work provides novel insight on preparing remarkable separator and mechanism of materials behavior.  相似文献   
28.
Ab initio composite approaches have been utilized to model and predict main group thermochemistry within 1 kcal mol−1, on average, from well-established reliable experiments, primarily for molecules with less than 30 atoms. For molecules of increasing size and complexity, such as biomolecular complexes, composite methodologies have been limited in their application. Therefore, the domain-based local pair natural orbital (DLPNO) methods have been implemented within the correlation consistent composite approach (ccCA) framework, namely DLPNO-ccCA, to reduce the computational cost (disk space, CPU (central processing unit) time, memory) and predict energetic properties such as enthalpies of formation, noncovalent interactions, and conformation energies for organic biomolecular complexes including one of the largest molecules examined via composite strategies, within 1 kcal mol−1, after calibration with 119 molecules and a set of linear alkanes. © 2019 Wiley Periodicals, Inc.  相似文献   
29.
对实腹式波形顶板-UHPC(超高性能混凝土)组合桥面板进行了改进, 采用空腹式结构建立波形钢板-UHPC组合桥面板有限元模型, 研究UHPC层厚度、波形钢板厚度、波形长度、下缘板宽度和波形高度等截面参数变化对组合桥面板受力特性的影响, 并确定其合理取值范围. 在此基础上, 通过理想点法对参数组合进行优化, 得到合理的参数匹配. 研究结果表明 相较于实腹式组合桥面板, 优化后的组合桥面板自重减小35%, 钢板弯折处应力减小16%; 相较于正交异性钢桥面板, 桥面板用钢量减小7%, 顶板与U肋连接位置应力减小47%.  相似文献   
30.
A polyurea macromer (PUM) was synthesized and dispersed in basic conditions to form self‐assembled nanoparticles (<20 nm dispersions, up to 30 wt % aq. soln.). These nanoparticles enabled surfactant‐free emulsion polymerization to form hybrid polyurea‐acrylic particles despite the absence of a measureable water‐soluble fraction. The Tg of the starting PUM material was a strong function of the PUM's extent of neutralization and hydration (varying between 100 °C and >175 °C) due to changes in hydrogen and ionic bonding. Two separate hybrid polyurea‐acrylic emulsion systems were prepared: one by direct polymerization of (meth)acrylic monomers in the presence of the nanodispersion and a second by a physical blend of PUM nanodispersion with an acrylic latex control. The direct polymerization method resulted in a hybrid emulsion particle size that developed by a mechanism resembling conventional emulsion polymerization and was unlike that described for seeded polyurethane dispersion systems. Film hardness was shown to increase with increasing coating thickness for the hybrid film prepared by direct polymerization. The resulting mechanical properties could be explained by applying mechanical models for a composite foam structure. These results were unprecedented for normal elastomer films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1373–1388  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号